The generator matrix

 1  0  0  1  1  1  1  1  1  3  1  1 X+3  1  X 2X+3  1  1  1  1  6  1  1  1  1  1  1  1  1  1  6 2X+3  1 2X  1  1  1  1  1 X+3  1  1  1  0  1 2X+6  1  1  1  1  1  X  1  1  1 X+3 2X+6  1  1  1  1  3 2X+6  1  6  1 X+3  1  1  1  1  1  1  1
 0  1  0  3  1  4  2  X  8  1 2X+4 2X+2  1 X+3  1 2X+6  6  2 X+6 2X+7 2X+6 2X X+8 X+2 X+1 X+7  0 2X+1 2X+5 X+5  1  1 X+4  1 2X+1 2X+3  5  4  3  1 2X+2 X+3 X+1  1 X+5  1 2X+7 2X+8  X 2X+6  7  1 X+6 X+7  5 2X+3  1 2X+8 2X+4  8  4  1  3 2X+8  1 X+8  1  7 2X 2X+1 2X+3 X+3 2X+4  1
 0  0  1 2X+4 2X+1  3 X+8 X+5 2X+6  4 2X+2  4  2 2X X+6  1  7  5 2X+8  2  1 X+3 2X+6  4 X+7 2X+2 2X+5 2X  5 X+4 2X+7 2X+8  6  0 2X+1  0  X  8 X+1 2X+8 X+6 X+4  8  2  2 2X+7  6 2X+3  X  7 X+7  3  5  4 2X+8  1 X+3 X+5  7 X+7  X X+8  1 X+4 X+3  3 X+7 2X  X X+1 2X+7  1 X+3 2X+3

generates a code of length 74 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 142.

Homogenous weight enumerator: w(x)=1x^0+906x^142+1770x^143+1186x^144+2400x^145+2490x^146+790x^147+1848x^148+1812x^149+858x^150+1446x^151+1566x^152+428x^153+768x^154+714x^155+206x^156+402x^157+60x^158+6x^159+6x^160+12x^161+8x^162

The gray image is a code over GF(3) with n=666, k=9 and d=426.
This code was found by Heurico 1.16 in 0.838 seconds.